Product Catalogue 2021

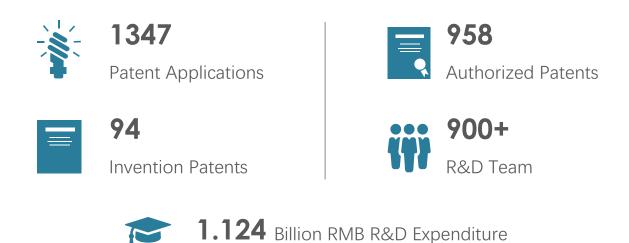
Building Your Trust in Solar

www.jinkosolar.eu

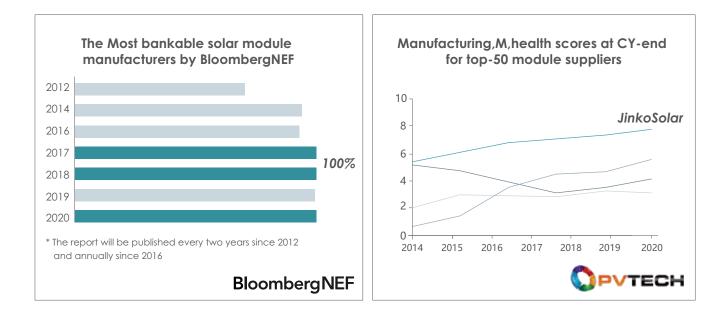
Table of Contents

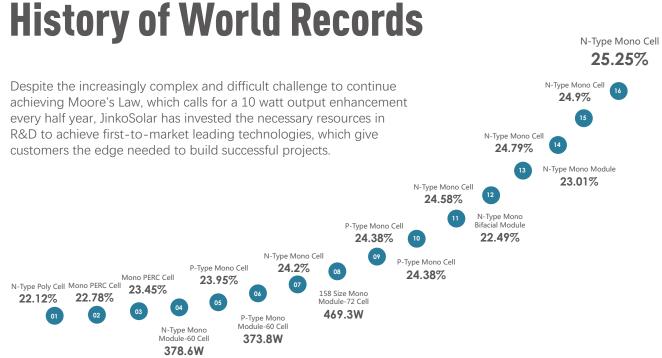
- 1. Jinko's Brand Advantages
- 2. Jinko Technology
 - a. Half-Cell (HC) Technology
 - b. Multi- Busbar (MBB) Technology
 - c. Bifacial Technology
 - d. Tiling Ribbon Technology
 - e. N-Type Technology
- 3. Jinko Products
 - a. Tiger Series
 - c. Tiger Pro Series

World's No.1 Shipment for 4 Consecutive Years


JinkoSolar (NYSE: JKS) is one of the largest and most innovative solar module manufacturers in the world. JinkoSolar distributes its solar products and sells its solutions and services to a diversified international utility, commercial and residential customer base in more than 150 countries.

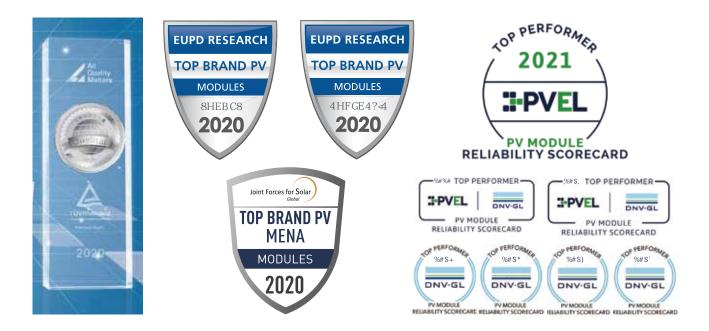
As of December 31, 2020, JinkoSolar has delivered more than 70GW solar panels globally, which makes JinkoSolar the world's largest photovoltaic module manufacturer in terms of cumulative shipments.


R&D By the Numbers

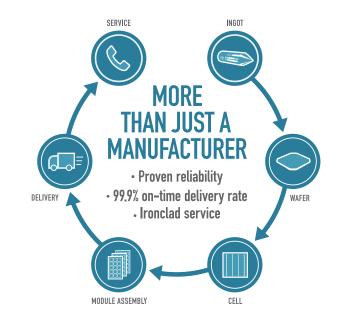

Despite the increasingly complex and difficult challenge to continue achieving Moore's Law, which calls for a 10 watt output enhancement every half year, JinkoSolar has invested the necessary resources in R&D to achieve first-to-market leading technologies, which give customers the edge needed to build successful projects.

Long History of Bankability

Ranked as Top Solar Brand used in Debt Financed Projects and Most "Bankable" PV Manufacturer by Bloomberg New Energy Finance. 100% of the BNEF survey respondents considered JinkoSolar as highly bankable.



Robust Quality Certified


In 2021, JinkoSolar again ranks as a "Top Performer" in the DNV-GL PV Module Reliability Scorecard, for seventh consecutive year. The Company has also won the All Quality Matters Award from TÜV Rheinland for the fifth time, ranking first in testing conducted for the mono group.

Jinko has been awarded with the "Top Brand PV Europe Seal 2020" by EuPD Research for the second time in two consecutive years. EuPD Research awards Top PV seals based on its Global PV Installer Monitor Survey which compiles the opinions of solar installers from leading solar markets. In addition, JinkoSolar was also awarded 'Top Brand PV Australia Seal 2020' for the third consecutive year and in MENA region.

The Efficient and Resilient Supply Chain

JinkoSolar's flexibility in assuring sufficient supply for a diverse customer base, delivering on-time, providing in-house technical service, customizing its product to optimize customers' investment performance ratio, and making manufacturing excellence are JinkoSolar's core values.

Technology Innovation

JinkoSolar's has been globally recognized as a global module manufacturer and technology leader. In 2019 JinkoSolar won the Intersolar Award 2019 in the Photovoltaics category for its bifacial module with transparent backsheet from DuPont.

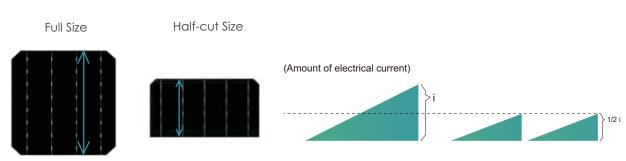
In 2020, JinkoSolar was qualified as a Finalist of the Intersolar Award with its Tiger N-type module. The Intersolar Award is presented annually to companies making a substantial contribution to the success of the industry, honoring technological innovations and groundbreaking solutions using photovoltaic-related technologies.

In 2020, JinkoSolar was awarded with pv magazine Award in Module Category for Tiger 475Wp.

TIGER Tiger N-type

- N-TYPE TECHNOLOGY

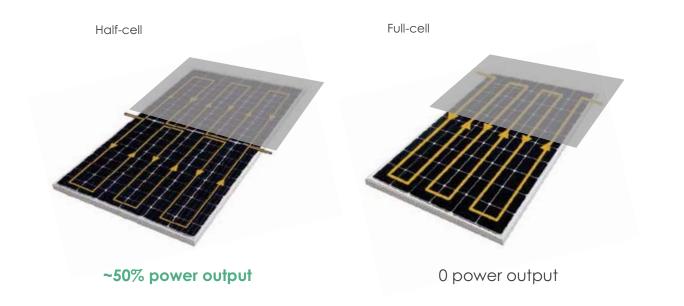
• HALF-CELL (HC) TECHNOLOGY MULTI-BUSBAR TECHNOLOGY BIFACIAL TECHNOLOGY TILING RIBBON TECHNOLOGY


HNOLOG

Half-Cell (HC) Technology

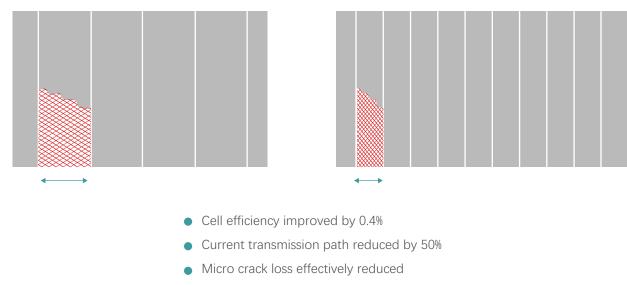
Lower Energy Losses

By using half-cells, the electrical current (i) flowing in each busbar is halved.

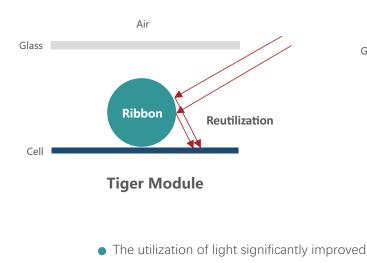

Therefore, the amount of internal losses in a half-cut module is 1/4 of a full-sized cell module.

Electrical Losses = Current² x Resistance

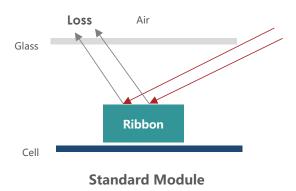
Lower Shading Loss


Shading loss of half-cell is improved compared to a regular module in specific shading conditions.

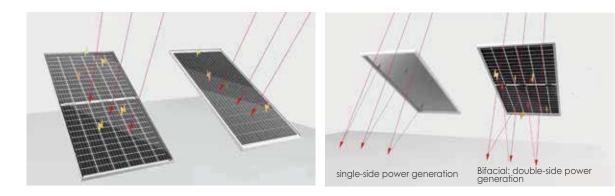
Multi-Busbar Technology

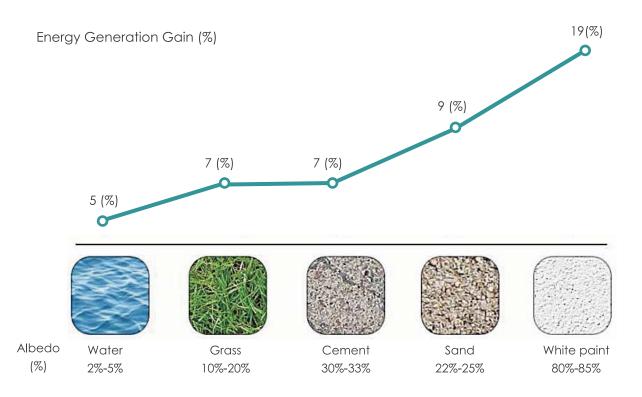

Lower Microcrack Loss

Compared with traditional 5BB modules, current transmission distance is 50% lower, which decreases the resistance and current loss.


Circular Ribbon Brings More Energy

Comparing with 5BB, Jinko modules use circular ribbon which is developed by Jinko R&D independently to achieve the reutilization of light absorption and increase energy generation.


• Power generation performance through obligue incidence greatly improved

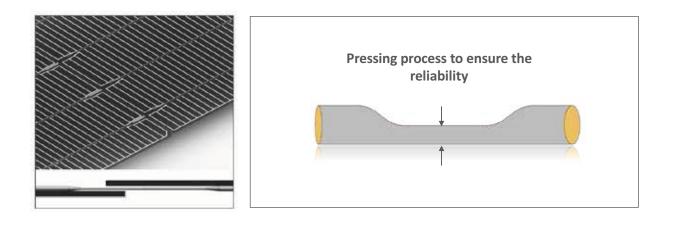

Bifacial Technology

Maximized Energy Generation

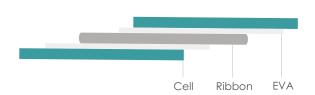
Up to 25% power gain depending on albedo and PV system design

Real Energy Generation Gain

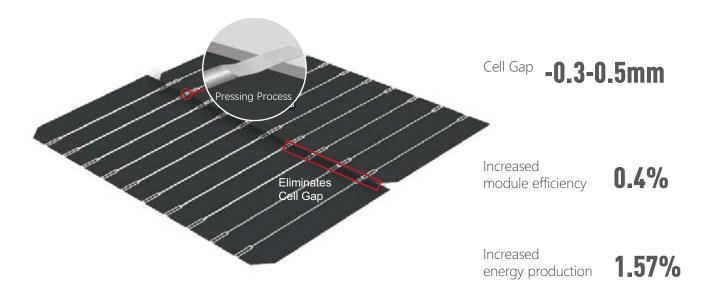
Bifacial Case Study



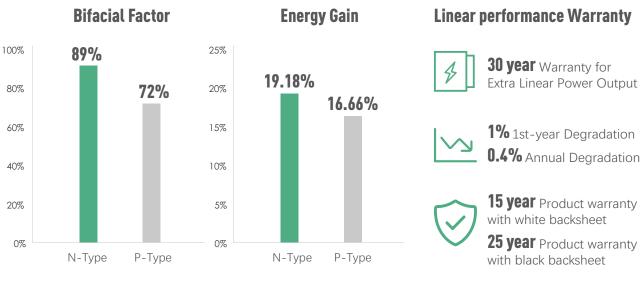
Location	Test Performer	Types of Ground	Type of Installation	Module Type	Test Type	Test Duration	Bifacial Gain
Haining, Zhejing province,CN	Chinese Academy of Sciences	White paint	Fixed (Module elevation: 1.2m, Tilt:30°)	Bifacial with dual glass Monofacial with dual glass	Module level	2018.5.23 - 2019.1.17	16%
Haining, Zhejing province,CN	Chinese Academy of Sciences	Sand	Fixed (Module elevation: 1.2m, Tilt:30°)	Swan bifacial with transparent backsheet Cheetah Monofacial Module	Module level	2019.2.1 - present	10.22%
Haining, Zhejing province,CN	Chinese Academy of Sciences	Cement	Fixed (Module elevation: 0.7m, Tilt:30°)	Swan bifacial with transparent backsheet Cheetah Monofacial Module	String level	2019.8.2 - present	9.74%
Qionghai, Haining province,CN	China Quality Certification centre (CQC)	Sand	Tracking (Module elevation: 2.7m, 2P tracker)	Swan bifacial with transparent backsheet Cheetah Monofacial Module	String level	2019.10.23 - present	16.66%
Davis, CA, USA	PVEL	White Groundcover (albedo 47%)	Tracking (Module elevation: 1.5m, 1P tracker)	Swan bifacial with transparent backsheet Cheetah Monofacial Module	String level	2019.10.18 - present	9.2%


Tiling Ribbon Technology

Pressing Process to Ensure the Reliability


Comparing with 5BB modules , Jinko circular ribbon has better suppleness, after the pressing process, it performs excellent reliability.

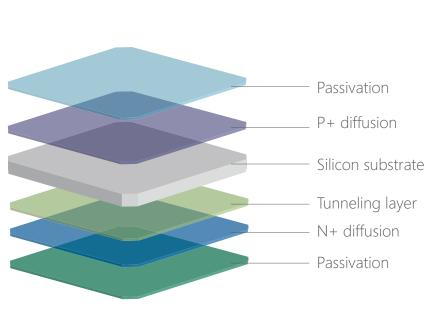
Structure diagram of overlapping area


According to the experiment, specially made EVA/POE will fill the overlapping region that gives excellent buffering effect to ensure the reliability.

N-type Technology

Compared with P-type products, N-type cells applied with different doping technology perform better in power degradation. The significant increase of bi-facial factor and the optimization of operating temperature also bring higher power gain. When it comes to the LCOE value, the analysis result has been markedly reduced compared with traditional P-type modules.

Higher bifacial factor = Higher energy generation compared with Ptype


*Module level field test results, sand ground, 2P tracker, Hainan province, China

HOT 2.0 Technology

The efficient passivation contact technology is applied in HOT 2.0 cells, which updates the Micro-nano tunneling through the oxide layer and carrier selective lamination of microcrystalline silicon thin films on the rear side. This advanced structure contributes to better passivation performance and electrical conductivity, increasing the cell efficiency and power generation performance. Under the mass production condition, the N-type HOT2.0 cell' s maximum efficiency is close to 25% and has a broad application prospect in the near future.

25.25% Cell efi. world record

24% Mass production Cell efi.

Designed for Residential Commercial Utility

Customer Benefits

Complete System and Product Certificates

IEC61215(2016), IEC61730(2016)

ISO9001:2015: Quality Management System

ISO14001:2015: Environment Management System

ISO45001:2018: Occupational health and safety management systems

Multi Busbar

PID Resistance

Saving BOS Cost

Higher power output

Low-light Performance

Durability Against Extreme Environmental Conditions

Product	Maximum Power	# of cells	Size/Weight
JKM-66TR	390-410W	132 cells(2x66)	1855×1029×30mm / 20.8kg
JKM-72HLM-BDVP	435-455W	144 cells (6×24)	2096×1039×30m / 28.1kg
JKM-72HLM-(V)	440-460W	144 cells (6×24)	2096×1039×35m / 25.1kg
JKM-72TR	460-480W	156 cells(2x78)	2182×1029×35mm / 25.0kg
JKMxxxN-6RL3-(V)	390-410W	132 cells (2x66)	1855*1029*30mm / 20.8kg
JKMxxxN-6TL3-(V)	355-375W	120 cells (6x20)	1692*1029*30mm / 19.0 kg

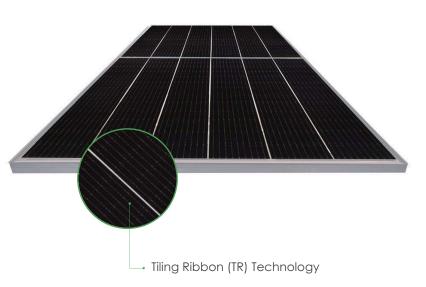
Higher Lifetime Power Yield

 $\downarrow \downarrow \downarrow \downarrow$

Severe Weather Resilience

High Efficiency

- **f** - - - II-


Tiger 66TR 390-410 Watt MONO-FACIAL MODULE

P-Type

Positive power tolerance of 0~+3%

IEC61215(2016), IEC61730(2016) ISO9001:2015: Quality Management System ISO14001:2015: Environment Management System

ISO45001:2018 Occupational health and safety management systems

Solar

Building Your Trust in Solar

Key Features

TR technology + Half Cell

TR technology with Half cell aims to eliminate the cell gap to increase module efficiency (mono-facial up to

Best Warranty 12 year product warranty, 25 year linear power warranty

Enhanced Mechanical Load

21.48%)

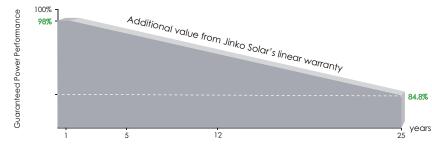
9BB instead of 5BB

9BB technology decreases the distance between bus bars and finger grid line which is benefit to power increase.

Certified to withstand: wind load (2400 Pascal) and snow load (5400 Pascal).

Higher lifetime Power Yield

2% first year degradation, 0.55% linear degradation

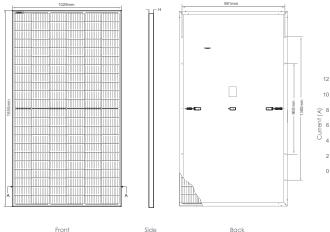


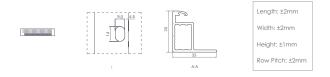
++++ 2400 Pa 5400 Pa

Avoid debris, cracks and broken gate risk effectively 9BB technology using circular ribbon that could avoid debris,

cracks and broken gate risk effectively

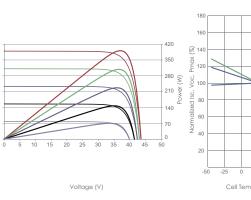
LINEAR PERFORMANCE WARRANTY




12 Year Product Warranty

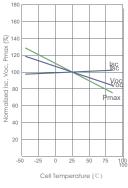
25 Year Linear Power Warranty

0.55% Annual Degradation Over 25 years


Packaging Configuration (Two pallets = One stack)

35pcs/pallets, 70pcs/stack, 840pcs/ 40'HQ Container

Module Type		JKM390M-6RL3 JKM390M-6RL3-V		JKM395M-6RL3 JKM395M-6RL3-V		JKM400M-6RL3 JKM400M-6RL3-V		JKM405M-6RL3 JKM405M-6RL3-V		M-6RL3 M-6RL3-V
	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT
Maximum Power (Pmax)	390Wp	290Wp	395Wp	294Wp	400Wp	298Wp	405Wp	301Wp	410Wp	305Wp
Maximum Power Voltage (Vmp)	36.49V	33.66V	36.58V	33.82V	36.67V	33.86V	36.76V	33.97V	36.84V	34.04V
Maximum Power Current (Imp)	10.69A	8.62A	10.80A	8.69A	10.91A	8.79A	11.02A	8.87A	11.13A	8.96A
Open-circuit Voltage (Voc)	43.75V	41.29V	43.93V	41.47V	44.12V	41.64V	44.20V	41.72V	44.29V	41.80V
Short-circuit Current (Isc)	11.39A	9.20A	11.48A	9.27A	11.57A	9.34A	11.68A	9.43A	11.79A	9.52A
Module Efficiency STC (%)	20.4	43%	20.	.69%	20.	.96%	21.	22%	21.4	8%
Operating Temperature(°C)					-40°C ~+	85°C				
Maximum System Voltage					1000/1500V	DC (IEC)				
Maximum Series Fuse Rating					20A	ι				
Power Tolerance					0~+3	%				
Temperature Coefficients of Pmax					-0.35%	/ °C				
Temperature Coefficients of Voc					-0.28%	/ °C				
Temperature Coefficients of Isc					0.048%	5/°C				
Nominal Operating Cell Temperature	e (NOCT)				45±2	C				



Electrical Performance & Temperature Dependence

Current-Voltage & Power-Voltage

Curves (395W)

Temperature Dependence of

lsc,Voc,Pmax

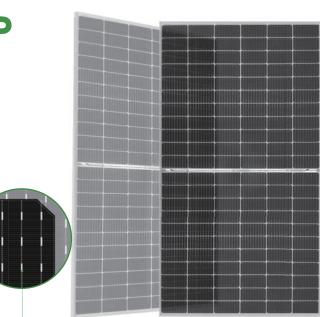
Mechanica	l Characteristics
Cell Type	P type Mono-crystalline
No. of cells	132 (2×66)
Dimensions	1855×1029×30mm (73.03×40.51×1.18 inch)
Weight	20.8kg (45.86 lbs)
Front Glass	3.2mm,Anti-Reflection Coating, High Transmission, Low Iron, Tempered Glass
Frame	Anodized Aluminium Alloy
Junction Box	IP68 Rated
Output Cables	TUV 1×4.0mm [*] (+): 290mm , (-): 145mm or Customized Length

Tiger LM 72HC-BDVP 435-455 Watt

BIFACIAL MODULE WITH DUAL GLASS

P-Type

Positive power tolerance of 0~+3%


IEC61215(2016), IEC61730(2016)

ISO9001:2015: Quality Management System

ISO14001:2015: Environment Management System

ISO45001:2018 Occupational health and safety management systems

Key Features

Bifacial Technology

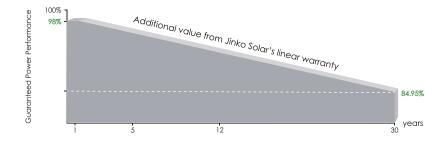
Multi Busbar Technology

Better light trapping and current collection to improve module power output and reliability.

Longer Life-time Power Yield 0.45% annual power degradation and 30 year linear power warranty.

PID Resistance

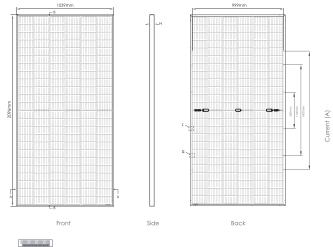
Excellent Anti-PID performance guarantee via optimized mass-production process and materials control

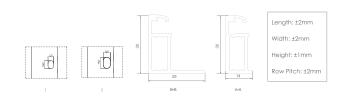


Low-light Performance Advanced glass and cell surface textured design ensure excellent performance in low-light environment

Higher Power Output Module power increases 5-25% generally, bringing significantly lower LCOE and higher IRR.

LINEAR PERFORMANCE WARRANTY




12 Year Product Warranty

30 Year Linear Power Warranty

0.45% Annual Degradation Over 30 years

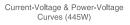
Packaging Configuration

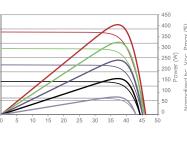
(Two pallets = One stack)

35pcs/pallets, 70pcs/stack, 770pcs/ 40'HQ Containe

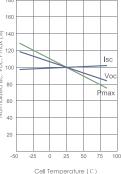
SPECIFICATIONS

Module Type		72HLM-BDVP			IVANAE A 7	2HLM-BDVP	IKA AEONA Z	2HLM-BDVP		
Module type									JKM455M-72	
	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT
Maximum Power (Pmax)	435Wp	324Wp	440Wp	327Wp	445Wp	331Wp	450Wp	335Wp	455Wp	339Wp
Maximum Power Voltage (Vmp)	40.81V	37.63V	41.01V	37.80V	41.21V	38.01V	41.40V	38.22 V	41.59V	38.38∨
Maximum Power Current (Imp)	10.66A	8.60A	10.73A	8.66A	10.80A	8.71A	10.87A	8.76A	10.94A	8.82A
Open-circuit Voltage (Voc)	48.96V	46.11V	49.16V	46.30V	49.36V	46.49∨	49.56V	46.68V	49.76V	46.87V
Short-circuit Current (Isc)	11.35A	9.17A	11.42A	9.22A	11.49A	9.28A	11.56A	9.34A	11.63A	9.39A
Module Efficiency STC (%)	19.	.97%	20.2	20%	20.4	3%	20.	66%	19.8	89%
Operating Temperature(°C)					-40°C~+8	85℃				
Maximum system voltage					1500VDC	(IEC)				
Maximum series fuse rating					25A					
Power tolerance					0~+39	%				
Temperature coefficients of Pma	x				-0.35%	∕°C				
Temperature coefficients of Voc					-0.29%	∕°C				
Temperature coefficients of Isc					0.048%	/°C				
Nominal operating cell temperat	ure (NOCI	-)			45±2°	С				
Refer. Bifacial Factor					70±59	76				


BIFAC	IAL OUTPUT-REARSIDE I	POWER GAIN					
5%	Maximum Power (Pmax) Module Efficiency STC (%)	457Wp 20.99%	462Wp 21.21%	467Wp 21.44%	473Wp 21.72%	478Wp 21.95%	
15%	Maximum Power (Pmax) Module Efficiency STC (%)	500Wp 22.96%	506Wp 23.24%	512Wp 23.51%	518Wp 23.79%	523Wp 24.02%	
25%	Maximum Power (Pmax) Module Efficiency STC (%)	544Wp 24.98%	550Wp 25.26%	556Wp 25.53%	563Wp 25.85%	569Wp 26.13%	


Cell Temperature 25°C Ambient Temperature 20°C

©2020 Jinko Solar Co., Ltd. All rights reserved. Specifications included in this datasheet are subject to change without notice.


Electrical Performance & Temperature Dependence

Temperature Dependence of Isc.Voc.Pmax

Voltage (V)

Mechanical Characteristics

Cell Type	P type Mono-crystalline
No. of cells	144 (6×24)
Dimensions	2096×1039×30mm (82.52×40.91×1.18 inch)
Weight	28.1kg (61.95 lbs)
Front Glass	2.0mm, Anti-Reflection Coating
Back Glass	2.0mm, heat strengthened glass
Frame	Anodized Aluminium Alloy
Junction Box	IP68 Rated
Output Cables	TUV 1×4.0mm [°] (+): 250mm , (-): 150mm or Customized Length

Wind Speed 1m/s

www.jinkosolar.com

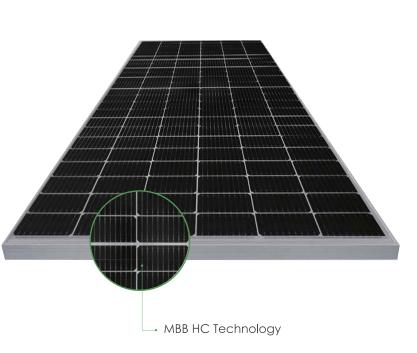
Tiger LM 72HC 440-460 Watt

MONO-FACIAL MODULE

P-Type

Positive power tolerance of 0~+3%

IEC61215(2016), IEC61730(2016) ISO9001:2015: Quality Management System


ISO14001:2015: Environment Management System

PID Resistance

control.

Conditions

ISO45001:2018 Occupational health and safety management systems

Key Features

• NH3

Multi Busbar Technology

Better light trapping and current collection to improve module power output and reliability.

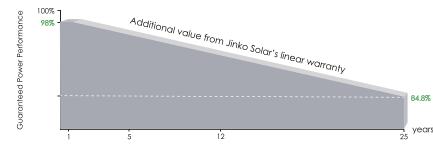
Excellent Anti-PID performance guarantee via

optimized mass-production process and materials

Durability Against Extreme Environmental

High salt mist and ammonia resistance.

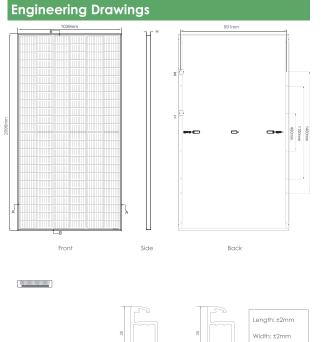
Reduced Hot Spot Loss


Optimized electrical design and lower operating current for reduced hot spot loss and better temperature coefficient.

Enhanced Mechanical Load 5400 Pa 2400 Pa

Certified to withstand: wind load (2400 Pascal) and snow load (5400 Pascal).

PV CYCLE POSITIVE QUALITY

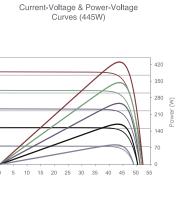

LINEAR PERFORMANCE WARRANTY

12 Year Product Warranty

25 Year Linear Power Warranty

0.55% Annual Degradation Over 25 years

Packagi	ing Co	onfig	urati	ion	
(Two pallets)	= One sta				


31pcs/pallets, 62pcs/stack, 682pcs/40'HQ Containe

Module Type	JKM440N JKM440M		JKM4451 JKM445M		JKM450N JKM450M			M-72HLM -72HLM-V		M-72HLM -72HLM-V
	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT
Maximum Power (Pmax)	440Wp	327Wp	445Wp	331Wp	450Wp	335Wp	455Wp	339Wp	460Wp	342Wp
Maximum Power Voltage (Vmp)	40.97V	37.89V	41.17V	38.10V	41.37V	38.31V	41.56V	38.47V	41.78V	38.58∨
Maximum Power Current (Imp)	10.74A	8.64A	10.81A	8.69A	10.88A	8.74A	10.95A	8.80A	11.01A	8.87A
Open-circuit Voltage (Voc)	48.87V	46.03V	49.07V	46.22V	49.27V	46.41V	49.46V	46.59V	49.96V	47.06V
Short-circuit Current (Isc)	11.39A	9.20A	11.46A	9.26A	11.53A	9.31A	11.60A	9.37A	11.70A	9.45A
Module Efficiency STC (%)	20.2	20%	20.	43%	20.6	66%	20.8	39%	21.1	2%
Operating Temperature(°C)					-40°C~+	-85°C				
Maximum system voltage				1	000/1500	DC (IEC)				
Maximum series fuse rating					204	4				
Power tolerance					0~+3	3%				
Temperature coefficients of Pmax					-0.35%	с, °С				
Temperature coefficients of Voc					-0.29%	с/°С				
Temperature coefficients of Isc					0.048%	%/ °C				
Nominal operating cell temperature (NOC	CT)				45±2	C				

©2020 Jinko Solar Co., Ltd. All rights reserved. Specifications included in this datasheet are subject to change without notice.

Electrical Performance & Temperature Dependence

Voltage (V)

Temperature Dependence of Isc,Voc,Pmax

Mechanicc	I Characteristics
Cell Type	Mono PERC 166×166mm
No. of cells	144 (6×24)
Dimensions	2096×1039×35mm (82.52×40.91×1.38 inch)
Weight	25.1kg (55.34 lbs)
Front Glass	3.2mm,Anti-Reflection Coating, High Transmission, Low Iron, Tempered Glass
Frame	Anodized Aluminium Alloy
Junction Box	IP68 Rated
Output Cables	TUV 1×4.0mm [°] (+): 290mm , (-): 145mm or Customized Length

Tiger 78TR 460-480 Watt MONO-FACIAL MODULE

P-Type

Positive power tolerance of 0~+3%

IEC61215(2016), IEC61730(2016)

ISO9001:2015: Quality Management System

ISO14001:2015: Environment Management System

ISO45001:2018 Occupational health and safety management systems

 \mathbf{A} E PV CYCLE CLEAN ENERGY COUNCIL

Key Features

TR technology + Half Cell

TR technology with Half cell aims to eliminate the cell gap to increase module efficiency (mono-facial up to 21.38%)

9BB technology decreases the distance between bus bars and finger grid line which is benefit to power

Solar

Building Your Trust in Solar

Best Warranty 12 year product warranty, 25 year linear power warranty

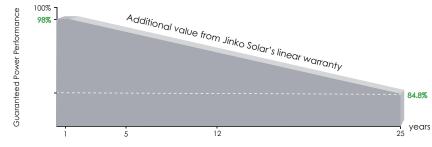
Enhanced Mechanical Load ++++ 2400 Pa 5400 Pa

Certified to withstand: wind load (2400 Pascal) and snow load (5400 Pascal).

Higher lifetime Power Yield

2% first year degradation. 0.55% linear degradation

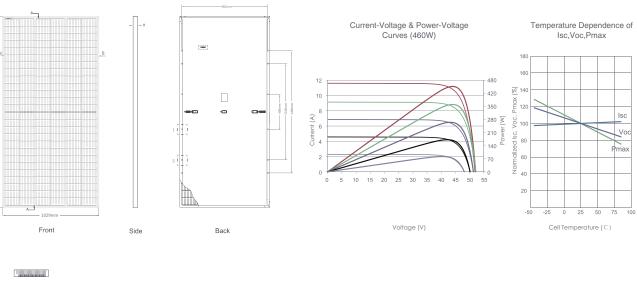
9BB instead of 5BB

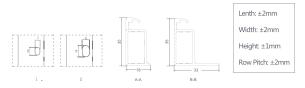

increase.

Avoid debris, cracks and broken gate risk effectively

9BB technology using circular ribbon that could avoid debris, cracks and broken gate risk effectively

LINEAR PERFORMANCE WARRANTY




12 Year Product Warranty

25 Year Linear Power Warranty

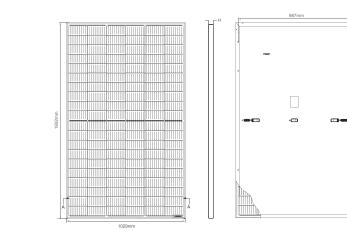
0.55% Annual Degradation Over 25 years

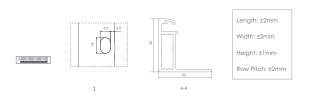
Engineering Drawings

Packaging Configuration

(Two pallets = One stack)

31pcs/pallets, 62pcs/stack, 620pcs/40'HQ Container


Module Type		JKM460M-7RL3 JKM465M-7 JKM460M-7RL3-V JKM465M-7F			JKM470 JKM470N		JKM475 JKM475N		JKM480M-7RL3 JKM480M-7RL3-V	
	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT
Maximum Power (Pmax)	460Wp	342Wp	465Wp	346Wp	470Wp	350Wp	475Wp	353Wp	480Wp	357Wp
Maximum Power Voltage (Vmp)	43.08V	39.43V	43.18V	39.58V	43.28V	39.69V	43.38V	39.75V	43.48V	39.90V
Maximum Power Current (Imp)	10.68A	8.68A	10.77A	8.74A	10.86A	8.81A	10.95A	8.89A	11.04A	8.95A
Open-circuit Voltage (Voc)	51.70V	48.80V	51.92V	49.01V	52.14V	49.21V	52.24V	49.31V	52.34V	49.40V
Short-circuit Current (Isc)	11.50A	9.29A	11.59A	9.36A	11.68A	9.43A	11.77A	9.51A	11.86A	9.58A
Module Efficiency STC (%)	20.	49%	20.	71%	20.93%		21	.16%	21.38	3%
Operating Temperature(°C)					-40°C~-	+85°C				
Maximum System Voltage					1000/1500	VDC (IEC)				
Maximum Series Fuse Rating					20	A				
Power Tolerance					0~+	3%				
Temperature Coefficients of Pmax					-0.35	%/°C				
Temperature Coefficients of Voc					-0.28	%/°C				
Temperature Coefficients of Isc					0.048	%/°C				
Nominal Operating Cell Temperature	NOCT)				45±	2°C				


Electrical Performance & Temperature Dependence

Mechanico	al Characteristics
Cell Type	P type Mono-crystalline
No. of cells	156(2×78)
Dimensions	2182×1029×35mm (85.91×40.51×1.38 inch)
Weight	25.0kg (55.12 lbs)
Front Glass	3.2mm,Anti-Reflection Coating, High Transmission, Low Iron, Tempered Glass
Frame	Anodized Aluminium Alloy
Junction Box	IP68 Rated
Output Cables	TUV 1×4.0mm [*] (+): 290mm , (-): 145mm or Customized Length

Side Back Front

Packaging Configuration (Two pallets = One stack)

35pcs/pallets, 70pcs/stack, 910pcs/ 40'HQ Container

Tiger N-Type 60TR 355-375 Watt

MONO FACIAL MODULE

N-Type

Positive power tolerance of 0~+3%

IEC61215(2016), IEC61730(2016) ISO9001:2015: Quality Management System

ISO14001:2015: Environment Management System

PID Resistance

control.

Conditions

ISO45001:2018 Occupational health and safety management systems

Key Features

A NH

Multi Busbar Technology

MBB solar cell adopts new technology to improve the efficiency of modules, offers a better aesthetic appearance.

Excellent Anti-PID performance guarantee via

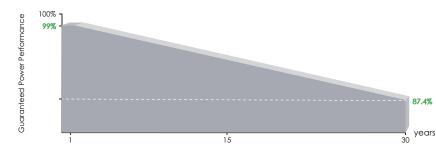
optimized mass-production process and materials

Durability Against Extreme Environmental

High salt mist and ammonia resistance.

2400 Pa 5400 Pa

vears

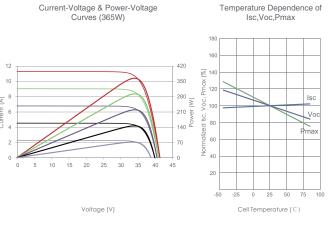

Hot 2.0 Technology The N-type module with Hot 2.0 technology has better reliability and lower LID/LETID.

Enhanced Mechanical Load ++++

Certified to withstand: wind load (2400 Pascal) and snow load (5400 Pascal).

POSITIVE QUALITY" PV CYCLE

LINEAR PERFORMANCE WARRANTY


15 Year Product Warranty

30 Year Linear Power Warranty

0.4% Annual Degradation Over 30 years

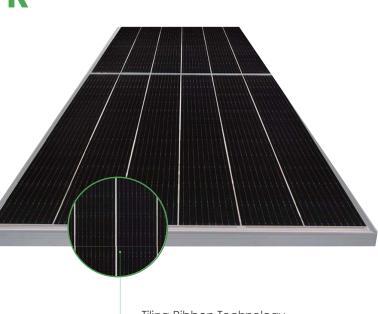
Electrical Performance & Temperature Dependence

Mechanico	al Characteristics
Cell Type	N type Mono-crystalline
No. of cells	120 (6×20)
Dimensions	1692×1029×30mm (66.61×40.51×1.18 inch)
Weight	19.0 kg (41.89 lbs)
Front Glass	3.2mm,Anti-Reflection Coating, High Transmission, Low Iron, Tempered Glass
Frame	Anodized Aluminium Alloy
Junction Box	IP68 Rated
Output Cables	TUV 1×4.0mm [°] (+): 290mm , (-): 145mm or Customized Length

_3 3-V	JKM365N-6TL3 JKM365N-6TL3-V		JKM370 JKM3701	N-6TL3 N-6TL3-V		5N-6TL3 N-6TL3-V
T	STC	NOCT	STC	NOCT	STC	NOCT
Vр	365Wp	272Wp	370Wp	276Wp	375Wp	280Wp
3V	34.34V	31.72V	34.49V	31.88V	34.63V	32.03V
A	10.63A	8.58A	10.73A	8.65A	10.83A	8.73A
σV	41.31V	38.99V	41.46V	39.13V	41.60V	39.26V
A	11.33A	9.15A	11.43A	9.23A	11.53A	9.31A
	20.	96%	21.	25%	21.5	54%
	-40°C~	-+85℃				
	1000/150	0VDC (IEC)				
	20	A				
	0~-	+3%				
	-0.34	ŀ%/℃				
	-0.28	3%/°C				
	0.04	8%/°C				
	45:	±2℃				
	~	AM=1	.5			
re 20°	°C	A	M=1.5	Ţ	Wind Spee	d 1m/s

Tiger N-Type 66TR 390-410 Watt

MONO-FACIAL MODULE


N-Type

Positive power tolerance of 0~+3%

IEC61215(2016), IEC61730(2016) ISO9001:2015: Quality Management System

ISO14001:2015: Environment Management System

ISO45001:2018 Occupational health and safety management systems

- Tiling Ribbon Technology

Key Features

Multi Busbar Technology

Better light trapping and current collection to improve module power output and reliability.

Hot 2.0 Technology The N-type module with Hot 2.0 technology has better reliability and lower LID/LETID.

NH,

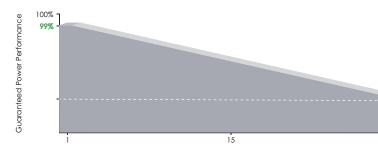
PID Resistance

Conditions

Excellent Anti-PID performance guarantee via optimized mass-production process and materials control.

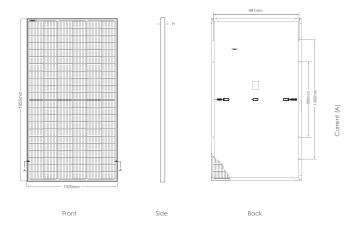
Durability Against Extreme Environmental

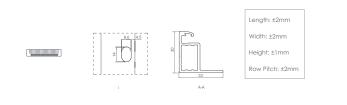
High salt mist and ammonia resistance.


87.4%

years

Enhanced Mechanical Load Certified to withstand: wind load (2400 Pascal) and snow load (5400 Pascal).

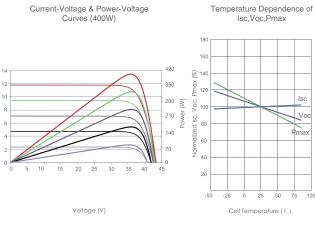

LINEAR PERFORMANCE WARRANTY



15 Year Product Warranty

30 Year Linear Power Warranty

0.4% Annual Degradation Over 30 years



Packaging Configuration (Two pallets = One stack) 35pcs/pallets, 70pcs/stack, 840pcs/40'HQ Container

Module Type		0N-6RL3 N-6RL3-V		5N-6RL3 N-6RL3-V)N-6RL3 N-6RL3-V		5N-6RL3 N-6RL3-V)N-6RL3 N-6RL3-V
	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT
Maximum Power (Pmax)	390Wp	291Wp	395Wp	295Wp	400Wp	298Wp	405Wp	302Wp	410Wp	306Wp
Maximum Power Voltage (Vmp)	36.11V	33.39V	36.18V	33.51V	36.24V	33.59V	36.33∨	33.70V	36.42V	33.78V
Maximum Power Current (Imp)	10.80A	8.71A	10.92A	8.79A	11.04A	8.88A	11.15A	8.96A	11.26A	9.05A
Open-circuit Voltage (Voc)	44.88V	42.36V	45.07V	42.54V	45.25V	42.71V	45.44V	42.89V	45.62V	43.06V
Short-circuit Current (Isc)	11.53A	9.31A	11.63A	9.39A	11.73A	9.47A	11.84A	9.56A	11.95A	9.65A
Module Efficiency STC (%)	20.4	13%	20.	69%	20.9	96%	21.2	22%	21.4	18%
Operating Temperature(°C)					-40 °C ~+	85°C				
Maximum System Voltage				1	000/1500∨	DC (IEC)				
Maximum Series Fuse Rating					20A	\				
Power Tolerance					0~+3	1%				
Temperature Coefficients of Pmax					-0.34%	с / С				
Temperature Coefficients of Voc					-0.28%	5/°C				
Temperature Coefficients of Isc					0.048%	с, °С				
Nominal Operating Cell Temperature (1	NOCT)				45±2	°C				
*STC: 🎬 Irradiance 1000W/m	2	Cell Tem	perature	25°C	~	AM=	=1.5			
NOCT: 🌺 Irradiance 800W/m² 🛛 🕼 Ambient Temperature 20°C 🧼 AM=1.5 🌱 Wind Speed 1m/s										

©2020 Jinko Solar Co., Ltd. All rights reserved. Specifications included in this datasheet are subject to change without notice.

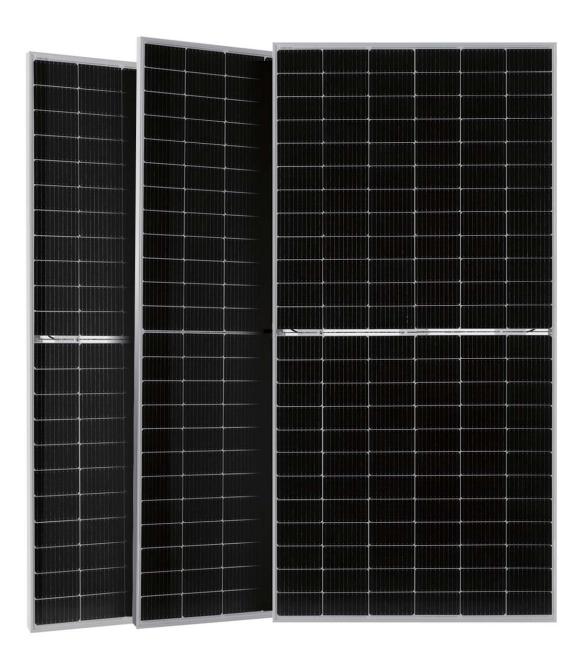
Electrical Performance & Temperature Dependence

Mechanico	Il Characteristics
Cell Type	N type Mono-crystalline
No. of cells	132 (2×66)
Dimensions	1855×1029×30mm (73.03×40.51×1.18 inch)
Weight	20.8kg (45.86 lbs)
Front Glass	3.2mm,Anti-Reflection Coating, High Transmission, Low Iron, Tempered Glass
Frame	Anodized Aluminium Alloy
Junction Box	IP68 Rated
Output Cables	TUV 1×4.0mm [°] (+): 290mm , (-): 145mm or Customized Length

Designed for Residential Commercial Utility \mathbf{V}

Customer Benefits

Complete System and Product Certificates


IEC61215(2016), IEC61730(2016)

ISO9001:2015: Quality Management System

ISO14001:2015: Environment Management System

ISO45001:2018: Occupational health and safety management systems

Multi Busbar

PID Resistance

Saving BOS Cost

Higher power output

Low-light Performance

Durability Against Extreme Environmental Conditions

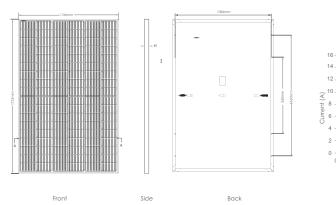
Product	Maximum Power	
JKM-54HL4-(V)	395-415W	
JKM-72HL4-BDVP	525-545W	
JKM-72HL4-TV	525-545W	
JKM-72HL4-V	530-550W	

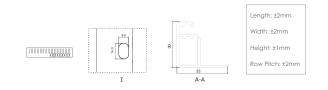
30

Higher Lifetime Power Yield

Severe Weather Resilience

High Efficiency


# of cells	Size/Weight
108 cells (2x54)	1722×1134×30mm / 22.0kg
144 cells (6×24)	2274×1134×30m / 34.3kg
144 cells (6×24)	2274×1134×35m / 28.9kg
144 cells (6×24)	2274×1134×35m / 28.9kg



Packaging Configuration (Two pallets = One stack)

36pcs/pallets, 72pcs/stack, 936pcs/ 40'HQ Containe

Module Type		M-54HL4 1-54HL4-V		JKM400M-54HL4 JKM400M-54HL4-V		JKM405M-54HL4 JKM405M-54HL4-V)M-54HL4 ∧-54HL4-V	JKM415M-54HL4 JKM415M-54HL4-V	
	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT
Maximum Power (Pmax)	395Wp	294Wp	400Wp	298Wp	405Wp	301Wp	410Wp	305Wp	415Wp	309Wp
Maximum Power Voltage (Vmp)	30.32V	28.26V	30.42V	28.42V	30.52V	28.56V	30.62V	28.72V	30.79V	28.88V
Maximum Power Current (Imp)	13.03A	10.40A	13.15A	10.47A	13.27A	10.55A	13.39A	10.62A	13.48A	10.69A
Open-circuit Voltage (Voc)	36.90V	34.83V	36.98V	34.90V	37.06V	34.98V	37.14V	35.05V	37.31V	35.21V
Short-circuit Current (Isc)	13.71A	11.07A	13.78A	11.13A	13.85A	11.19A	13.92A	11.24A	14.01A	11.32A
Module Efficiency STC (%)	20.2	23%	20.4	18%	20.7	4%	21.0	00%	21.2	25%
Operating Temperature(°C)					-40°C~-	+85°℃				
Maximum system voltage					1000/1500)VDC (IEC)				
Maximum series fuse rating					20,	A				
Power tolerance					0~+;	3%				
Temperature coefficients of Pmax					-0.35%	%/°C				
Temperature coefficients of Voc					-0.289	%/°C				
Temperature coefficients of lsc					0.0489	%/°C				
Nominal operating cell temperatur	e (NOCT)			45±2	2°C				
*STC: 🔆 Irradiance 1000W/m² 🕼 Cell Temperature 25°C 🏾 🏹 AM=1.5										
NOCT: $\text{Irradiance 800W/m}^2$ Morradiance 800W/m ² Morradiance 80W/m ² Morradiance 80										

Tiger Pro 54HC 395-415 Watt

MONO-FACIAL MODULE

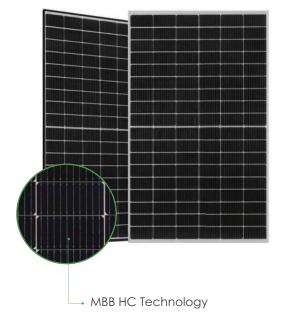
P-Type

Positive power tolerance of 0~+3%

IEC61215(2016), IEC61730(2016)

ISO9001:2015: Quality Management System

ISO14001:2015: Environment Management System


ISO45001:2018 Occupational health and safety management systems

Key Features

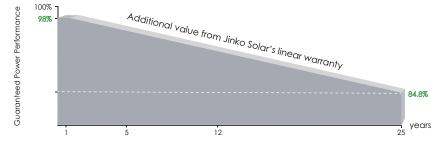
Multi Busbar Technology

Better light trapping and current collection to improve module power output and reliability.

Durability Against Extreme Environmental Conditions High salt mist and ammonia resistance.

Reduced Hot Spot Loss

Optimized electrical design and lower operating current for reduced hot spot loss and better temperature coefficient


• NHJ

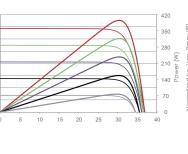
Enhanced Mechanical Load Certified to withstand: wind load (2400 Pascal) and snow load (5400 Pascal).

POSITIVE QUALITY"

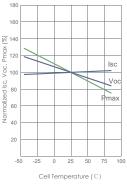
PID Resistance Excellent Anti-PID performance guarantee via optimized mass-production process and materials control

15 Year Product Warranty

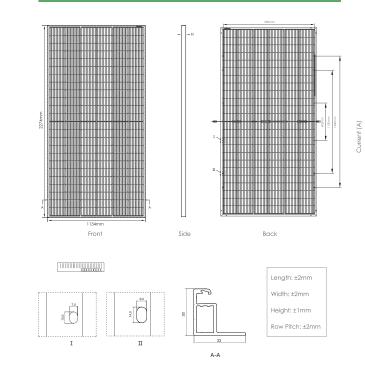
PV CYCLE


25 Year Linear Power Warranty

0.55% Annual Degradation Over 25 years


Electrical Performance & Temperature Dependence

Temperature Dependence of Isc,Voc,Pmax



Voltage (V)

Mechanico	al Characteristics
Cell Type	P type Mono-crystalline
No. of cells	108 (2x54)
Dimensions	1722×1134×30mm (67.80×44.65×1.18 inch)
Weight	22.0 kg (48.50 lbs)
Front Glass	3.2mm,Anti-Reflection Coating, High Transmission, Low Iron, Tempered Glass
Frame	Anodized Aluminium Alloy
Junction Box	IP68 Rated
Output Cables	TUV 1×4.0mm [*] (+): 400mm , (-): 200mm or Customized Length

Packaging Configuration

(Two pallets = One stack)

35pcs/pallets, 70pcs/stack, 630pcs/ 40'HQ Container

SPECIFICATIONS										
Module Type	JKM525M-7	2HL4-BDVP	JKM530M-7	2HL4-BDVP	JKM535M-7	2HL4-BDVP	JKM540M-7	2HL4-BDVP	JKM545M-7	2HL4-BDVF
	STC	NOCT								
Maximum Power (Pmax)	525Wp	391Wp	530Wp	394Wp	535Wp	398Wp	540Wp	402Wp	545Wp	405Wp
Maximum Power Voltage (Vmp)	40.80V	37.81V	40.87V	37.88V	40.94V	37.94V	41.13V	38.08V	41.32V	38.25∨
Maximum Power Current (Imp)	12.87A	10.33A	12.97A	10.41A	13.07A	10.49A	13.13A	10.55A	13.19A	10.60A
Open-circuit Voltage (Voc)	49.42V	46.65V	49.48V	46.70V	49.54V	46.76V	49.73V	46.94V	49.92V	47.12V
Short-circuit Current (Isc)	13.63A	11.01A	13.73A	11.09A	13.83A	11.17A	13.89A	11.22A	13.95A	11.27A
Module Efficiency STC (%)	20.3	6%	20.5	55%	20.7	75%	20.	94%	21.1	3%
Operating Temperature(°C)					-40°C~	+85℃				
Maximum system voltage					1500VD	C (IEC)				
Maximum series fuse rating					30)A				
Power tolerance					0~+	-3%				
Temperature coefficients of Pma	X				-0.35	%/℃				
Temperature coefficients of Voc					-0.28	%/°C				
Temperature coefficients of lsc					0.048	%/°C				
Nominal operating cell temperature (NOCT) 45±2°C										
Refer. Bifacial Factor					70±	:5%				

BIFACIAL OUTPUT-REARSIDE POWER GAIN								
5%	Maximum Power (Pmax) Module Efficiency STC (%)	551Wp 21.38%	557Wp 21.58%	562Wp 21.78%	567Wp 21.99%	572Wp 22.19%		
15%	Maximum Power (Pmax) Module Efficiency STC (%)	604Wp 23.41%	610Wp 23.64%	615Wp 23.86%	621Wp 24.08%	623Wp 24.30%		
25%	Maximum Power (Pmax) Module Efficiency STC (%)	656Wp 25.45%	663Wp 25.69%	669Wp 25.93%	675Wp 26.18%	681Wp 26.42%		

*STC: 🎬 Irradiance 1000W/m² 🛛 🕼 Cell Temperature 25°C NOCT: 🎬 Irradiance 800W/m²

Ambient Temperature 20°C

Tiger Pro 72HC-BDVP 525-545 Watt **BIFACIAL MODULE WITH** DUAL GLASS

P-Type

Positive power tolerance of 0~+3%

IEC61215(2016), IEC61730(2016)

ISO9001:2015: Quality Management System

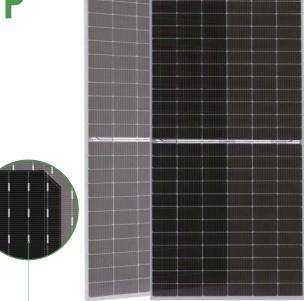
ISO14001:2015: Environment Management System

PID Resistance

control.

ISO45001:2018 Occupational health and safety management systems

Key Features



Multi Busbar Technology

Better light trapping and current collection to improve module power output and reliability.

Excellent Anti-PID performance guarantee via

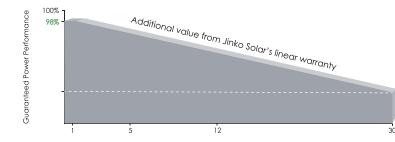
optimized mass-production process and materials

Bifacial Technology

Longer Life-time Power Yield 0.45% annual power degradation and 30 year linear power warranty.

Higher Power Output Module power increases 5-25% generally, bringing significantly lower LCOE and higher IRR.

84.95%


years

Ļ

Enhanced Mechanical Load Certified to withstand: wind load (2400 Pascal) and snow load (5400 Pascal).

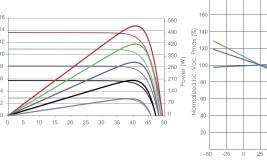
POSITIVE QUALITY

LINEAR PERFORMANCE WARRANTY

12 Year Product Warranty

PV CYCLE

30 Year Linear Power Warranty


0.45% Annual Degradation Over 30 years

©2020 Jinko Solar Co., Ltd. All rights reserved. Specifications included in this datasheet are subject to change without notice.

Electrical Performance & Temperature Dependence

Temperature Dependence of Isc,Voc,Pmax

Voltage (V)

Cell Temperature (C

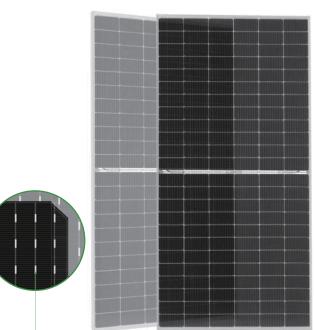
Mechanicc	Il Characteristics
Cell Type	P type Mono-crystalline
No. of cells	144 (6×24)
Dimensions	2274×1134×30mm (89.53×44.65×1.18 inch)
Weight	34.3 kg (75.6 lbs)
Front Glass	2.0mm, Anti-Reflection Coating
Back Glass	2.0mm, Anti-Reflection Coating
Frame	Anodized Aluminium Alloy
Junction Box	IP68 Rated
Output Cables	TUV 1×4.0mm [*] (+): 400mm , (-): 200mm or Customized Length

Wind Speed 1m/s

BIFACIAL MODULE WITH TRANSPARENT BACKSHEET

P-Type

Positive power tolerance of 0~+3%


IEC61215(2016), IEC61730(2016)

ISO9001:2015: Quality Management System

ISO14001:2015: Environment Management System

ISO45001:2018 Occupational health and safety management systems

Key Features

Solar

Building Your Trust in Solar

— Bifacial Technology

Multi Busbar Technology

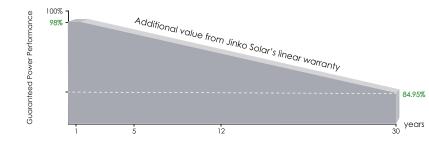
Better light trapping and current collection to improve module power output and reliability.

Longer Life-time Power Yield 0.45% annual power degradation and 30 year linear power warranty.

Light-weight design

Light-weight design using transparent backsheet for easy installation and low BOS cost.

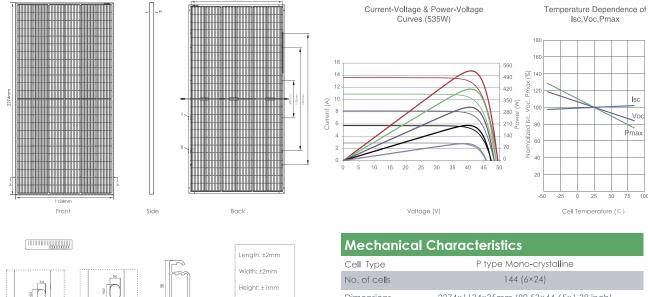
Enhanced Mechanical Load Certified to withstand: wind load (2400 Pascal) and snow load (5400 Pascal).


POSITIVE QUALITY

Higher Power Output Module power increases 5-25% generally, bringing significantly lower LCOE and higher IRR.

PV CYCLE

LINEAR PERFORMANCE WARRANTY



30 Year Linear Power Warranty

0.45% Annual Degradation Over 30 years

Engineering Drawings

Row Pitch: ±2m

Packaging Configuration

(Two pallets = One stack)

31pcs/pallets, 62pcs/stack, 620pcs/ 40'HQ Container

SPECIFICATIONS										
Module Type	JKM525M-72HL4-TV		JKM530M-72HL4-TV		JKM535M-72HL4-TV		JKM540M-72HL4-TV		JKM545M-72HL4-TV	
	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT
Maximum Power (Pmax)	525Wp	391Wp	530Wp	394Wp	535Wp	398Wp	540Wp	402Wp	545Wp	405Wp
Maximum Power Voltage (Vmp)	40.61V	37.74V	40.71V	37.88V	40.81V	37.98∨	40.91V	38.08V	41.07V	38.18V
Maximum Power Current (Imp)	12.93A	10.35A	13.02A	10.41A	13.11A	10.48A	13.20A	10.55A	13.27A	10.62A
Open-circuit Voltage (Voc)	49.27V	46.50V	49.35V	46.58V	49.42V	46.65V	49.49V	46.71V	49.65V	46.86V
Short-circuit Current (Isc)	13.64A	11.02A	13.71A	11.07A	13.79A	11.14A	13.87A	11.20A	13.94A	11.26A
Module Efficiency STC (%) 20.36%		36%	20.	20.55% 20.75%		75%	20.94%		21.13%	
Operating Temperature(°C)				-40°C~+85°C						
Maximum system voltage				1500VDC (IEC)						
Maximum series fuse rating					30)A				
Power tolerance				0~+3%						
Temperature coefficients of Pmax			-0.35%/°C							
Temperature coefficients of Voc				-0.28%/°C						
Temperature coefficients of Isc				0.048%/°C						
Nominal operating cell temperatu	ire (NOCT)				45±	:2°C				
Refer. Bifacial Factor					70±	:5%				

BIFAC	SIFACIAL OUTPUT-REARSIDE POWER GAIN							
5%	Maximum Power (Pmax)	551Wp	557Wp	562Wp	567Wp	572Wp		
	Module Efficiency STC (%)	21.38%	21.58%	21.78%	21.99%	22.19%		
15%	Maximum Power (Pmax)	604Wp	610Wp	615Wp	621Wp	623Wp		
	Module Efficiency STC (%)	23.41%	23.64%	23.86%	24.08%	24.30%		
25%	Maximum Power (Pmax)	656Wp	663Wp	669Wp	675Wp	681Wp		
	Module Efficiency STC (%)	25.45%	25.69%	25.93%	26.18%	26.42%		

Ambient Temperature 20°C

©2020 Jinko Solar Co., Ltd. All rights reserved. Specifications included in this datasheet are subject to change without notice.

Electrical Performance & Temperature Dependence

Mechanica	l Characteristics
Cell Type	P type Mono-crystalline
No. of cells	144 (6×24)
Dimensions	2274×1134×35mm (89.53×44.65×1.38 inch)
Weight	28.9 kg (63.7 lbs)
Front Glass	3.2mm,Anti-Reflection Coating, High Transmission, Low Iron, Tempered Glass
Frame	Anodized Aluminium Alloy
Junction Box	IP68 Rated
Output Cables	TUV 1×4.0mm ⁺ (+): 400mm , (-): 200mm or Customized Length

AM=1.5

Wind Speed 1m/s

Tiger Pro 72HC 530-550 Watt

MONO-FACIAL MODULE

P-Type

Positive power tolerance of 0~+3%

IEC61215(2016), IEC61730(2016)

ISO9001:2015: Quality Management System ISO14001:2015: Environment Management System

ISO45001:2018

Occupational health and safety management systems

- MBB HC Technology

Key Features

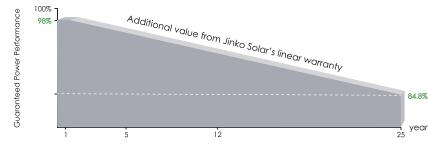
Multi Busbar Technology

Better light trapping and current collection to improve module power output and reliability.

Durability Against Extreme Environmental Conditions High salt mist and ammonia resistance.

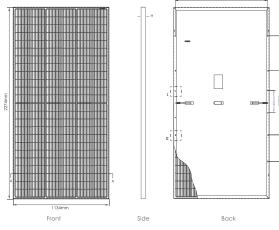
Reduced Hot Spot Loss

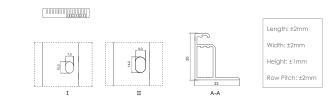
Optimized electrical design and lower operating current for reduced hot spot loss and better temperature coefficient.


Longer Life-time Power Yield 0.55% annual power degradation and 25 year linear power warranty

Enhanced Mechanical Load Certified to withstand: wind load (2400 Pascal) and snow load (5400 Pascal).

PV CYCLE POSITIVE QUALITY

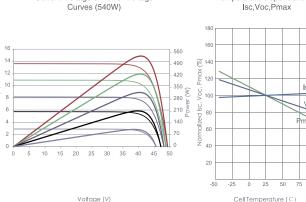

LINEAR PERFORMANCE WARRANTY



12 Year Product Warranty

25 Year Linear Power Warranty

0.55% Annual Degradation Over 25 years


Packaging Configuration (Two pallets = One stack) 31pcs/pallets, 62pcs/stack, 620pcs/ 40'HQ Contained

SPECIFICATIONS Module Type JKM530M-72HL4 JKM535M-72HL4 JKM530M-72HL4-V JKM535M-72HL4-V STC NOCT STC NOCT Maximum Power (Pmax) 530Wp 394Wp 535Wp 398Wp Maximum Power Voltage (Vmp) 40.56V 37.84V 40.63V 37.91V Maximum Power Current (Imp) 13.07A 10.42A 13.17A 10.50A Open-circuit Voltage (Voc) 49.26V 46.50V 49.34V 46.57V Short-circuit Current (lsc) 13.71A 11.07A 13.79A 11.14A Module Efficiency STC (%) 20.55% 20.75% Operating Temperature(°C) Maximum system voltage Maximum series fuse rating Power tolerance Temperature coefficients of Pmax Temperature coefficients of Voo Temperature coefficients of lsc Nominal operating cell temperature (NOCT)

©2020 Jinko Solar Co., Ltd. All rights reserved. Specifications included in this datasheet are subject to change without notice.

Electrical Performance & Temperature Dependence

Current-Voltage & Power-Voltage

		16	0					
~	- 560							
\sim	- 490	於 14	0					
$\rightarrow +$	- 420	Nomalized Isc, Voc, Pmax (%) 9 8 01 71 11						
$\sim H$	350 ~	۵ ۵		\sim				Isc
	- 350 (N) - 280 Jo 210 O	× 10	0					Voc
	210 👌	1 80	,					100
\mathcal{A}	140	lizec					F	max
	70	00 60)					
	0 – 0	2 40						
0 45	50							
		20)					
			-50 -2	25 () 2	5 5	0 7	5 10
				CellT	empe	erature	(°C)	

Temperature Dependence of

Mechanical Characteristics						
Cell Type	P type Mono-crystalline					
No. of cells	144 (6×24)					
Dimensions	2274×1134×35mm (89.53×44.65×1.38 inch)					
Weight	28.9 kg (63.7 lbs)					
Front Glass	3.2mm,Anti-Reflection Coating, High Transmission, Low Iron, Tempered Glass					
Frame	Anodized Aluminium Alloy					
Junction Box	IP68 Rated					
Output Cables	TUV 1×4.0mm (+): 400mm , (-): 200mm or Customized Lenath					

2HL4 HL4-V	JKM535M-72HL4 JKM535M-72HL4-V		JKM540M-72HL4 JKM540M-72HL4-V		JKM545N JKM545M		JKM550M-72HL4 JKM550M-72HL4-V		
IOCT	STC	NOCT STC NOCT			STC	NOCT	STC	NOCT	
94Wp	535Wp	398Wp	540Wp	402Wp	545Wp	405Wp	550Wp	409Wp	
7.84V	40.63V	37.91V	40.70V	38.08∨	40.80V	38.25V	40.90V	38.42V	
0.42A	13.17A	10.50A	13.27A	10.55A	13.36A	10.60A	13.45A	10.65A	
6.50V	49.34V	46.57V	49.42V	46.65V	49.52V	46.74V	49.62V	46.84V	
1.07A	13.79A	11.14A	13.85A	11.19A	13.94A	11.26A	14.03A	11.33A	
	20.	75%	20.9	94%	21.	13%	21.3	33%	
-40°C~+85°C									
1000/1500VDC (IEC)									
25A									
			0~+	3%					
			-0.359	%/°C					
			-0.289	%/°C					
			0.048	%/°C					
45±2℃									
	Temperati mbient Ter		e 20°C	ia 🔿	M=1.5 AM=1.5	Ţ	Wind Spe	ed 1m/s	
						<i>P</i>	[